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Abstract. We study the critical behavior of the number of monomer-monomer contacts for two polymers
in a good solvent. Polymers are modeled by two self-avoiding walks situated on fractals that belong to the
checkerboard (CB) and X family. Each member of a family is labeled by an odd integer b, 3 ≤ b ≤ ∞.
By applying the exact Renormalization Group (RG) method, we establish the relevant phase diagrams
whereby we calculate the contact critical exponents ϕ (for the CB and X fractals with b = 5 and b = 7).
The critical exponent ϕ is associated with power law of the number of sites at which the two polymers are
touching each other.

PACS. 64.60.Ak Renormalization-group, fractal, and percolation studies of phase transitions – 36.20.Ey
Conformation (statistics and dynamics)

1 Introduction

The self-avoiding walk (SAW) is a random walk that must
not contain self-intersections. It has been extensively used
as a model of a linear polymer chain in a good solvent. Al-
though an isolated chain is difficult to observe experimen-
tally (even at high polymer dilution), numerous studies of
the single chain statistics have been upheld as an essential
step towards understanding more challenging many-chain
systems. A plausible extension of the single polymer con-
cept is the model of two chains in a solvent (good for
both chains) [1] whose properties can be also investigated
by studying statistics of two SAWs on a lattice [2]. How-
ever, the corresponding investigations appears to be diffi-
cult if we assume the presence of inter-chain interactions.
In this paper we study two chemically different polymers
that are situated on the bottom of a shallow container,
and which are coupled by a considerable crosslinking in-
teraction. Such a situation can be modelled by two mu-
tually crossing self-avoiding walks, that is, by two SAWs
whose paths on a two-dimensional lattice may intersect
(cross) each other. Each crossing of the paths corresponds
to a contact of two different monomers, and therefore with
each crossing we may associate the contact energy εc. In
analogy with the problem of polymer interaction with a
penetrable surface [3], we expect to find that with decreas-
ing of temperature the number of crossings M increases
so that at the critical temperature Tc it behaves according
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to the power law
M ∼ Nϕ, (1)

where N is the total number of monomers in the longer
chain. Below Tc the number of crossings becomes propor-
tional to N , whereas above Tc it is vanishingly small.

The problem of two chemically different polymers in
a good solvent has been extensively studied experimen-
tally [4–6] and theoretically. Various theoretical tech-
niques have been applied, including the random phase
approximation [7–9], renormalization group (RG) meth-
ods [10–13], field theoretical approach [14] and Monte
Carlo simulations [15], to study models of the polymer
system in Euclidean lattices. Recently, the problem of two
interacting polymer chains has been studied using simul-
taneously different models and techniques. Thus, a model
of two SAWs which are allowed to cross each other was
studied by exact enumeration and the Monte Carlo simu-
lations [16]. On the other hand, a system of two SAWs that
are mutually avoiding was studied as a diblock copoly-
mer model [17,18]. Finally, the two-SAW model has been
used in attacking the denaturation problem of the DNA
molecules [19–22].

However, in spite of these numerous different studies
of the polymer problem in the case of the Euclidean lat-
tices, the entire physical picture, achieved so far, is of a
phenomenological character, and, for example, there is no
exact result for the contact critical exponent ϕ, except for
the study of the corresponding two-dimensional diblock
copolymer model [17], in which case it was conjectured
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that ϕ = 9/16. For this reason, it has been desirable to ex-
tend the relevant study to a family of fractal lattices whose
members allow, in principle, exact treatment of the prob-
lem, and whose characteristics approach (via the so-called
fractal-to-Euclidean crossover) properties of a Euclidean
lattice. Besides, the study of the polymer problem on frac-
tal lattices has its own practical importance because real
containers of the polymer solvent are in many cases porous
media that are often fractals, which means that they dis-
play self-similar distribution of voids (obstacles) over three
to four orders of magnitudes in length scale. The prob-
lem described has been attacked, for the Sierpinski gasket
(SG) family of fractals, via an exact RG approach [23,24],
and by applying the Monte Carlo renormalization group
technique [25]. In addition, the problem of two interacting
polymer chains, with the interaction parameters that do
not allow intersections, has been studied, using an exact
RG approach, on a family of the simplex type of frac-
tals [26].

In this paper we exploit the (RG) method to calculate
the contact critical exponent ϕ for the model of two cross-
ing SAWs situated on the CB fractals and, equivalently,
for the X fractals. We have obtained ϕ for the CB (X)
fractals, with b = 5 and b = 7. Details of the requisite
RG transformations are explained in Section 2, while the
corresponding analysis is performed in Section 3. In Sec-
tion 4 we present a summary of the obtained results to-
gether with an overall discussion within the framework of
the current knowledge of the properties of two interpene-
trating polymers.

2 Renormalization group transformations

In this section we are going to apply the RG method to
study the two crosslinking polymer chains, in a good sol-
vent, situated on the CB (or X) family of fractals. These
fractals have been studied in numerous papers, and conse-
quently we shall give here only the necessary brief account
of their basic properties. It starts with recalling the fact
that each member of the plane CB and X family is labelled
by an odd integer b ≥ 3 and can be obtained as the result
of an infinite iterative process of successive (r → r + 1)
enlarging the fractal structure b times and replacing the
smallest parts of the enlarged structure with the generator
(initial structure, r = 1). The generator of a CB fractal is
a square, of size b× b, composed of b rows of unit squares,
so that within each row and each column every other of
them is removed, whereas in the case of X fractals instead
of unit squares we put crosses composed of squares’ diago-
nals (see Fig. 1). Taking into account the self–similar way
of the construction of the fractals, one can easily show that
the fractal dimension df for an arbitrary CB fractal (as
well as for X), specified by b, is equal to ln[(b2+1)/2]/ ln b,
so that df acquires the Euclidean value 2 when b → ∞.
In order to explore effects of crosslinking of two SAWs
on the CB (X) fractals, we introduce the two Boltzmann
factors w = e−εc/T and t = e−εt/T , where εc is energy
of two monomers in contact (which occurs at a crossing,

(a)

(b)

r = 1 r=2

r=2r = 1

Fig. 1. The first two steps (r = 1 and r = 2) of the self-similar
construction of the CB (a) and X (b) fractals in the case b = 5.

or touching, site of SAWs), while εt is the energy associ-
ated with two monomers which are nearest neighbours to
a crosslinked site and which are visited by different SAWs
(see Fig. 2).

If we assign the weight x1 to a step of the N1-step
SAW and x2 to a step of the N2-step SAW, which have
M mutual crossings, and there are K pair of sites which
are nearest neighbours to crosslinked sites (that are vis-
ited by different SAWs), then the corresponding weight
of such a configuration is xN1

1 xN2
2 wM tK . An arbitrary one

polymer configuration can be described by using three [27]
restricted generating functions, that is, six restricted gen-
erating functions for two separated polymers (see Fig. 3).
For the r stage fractal structure, these generating func-
tions have the form

F
(r)
i (xi) =

∑
Ni

Fi
(r)(Ni)xNi

i , i = 1, 2, (2)

G
(r)
i (xi) =

∑
Ni

Gi
(r)(Ni)xNi

i , i = 1, 2, (3)

H
(r)
i (xi) =

∑
Ni

Hi
(r)(Ni)xNi

i , i = 1, 2. (4)

To describe all possible configurations of the two crosslink-
ing SAWs we have conceived that we need additional fif-
teen restricted generating functions (see Fig. 4), which in
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Fig. 2. The b = 5 generator of X fractal with segments of
two different SAW chains (two different polymers) depicted
by black and gray solid lines, while monomers are represented
by black and gray bullets. The two SAWs display contacts at
the six sites, so that each contact contributes the weight fac-
tor w. The dotted lines indicate interaction (characterized by
weight factor t) between those monomers which are nearest
neighbours to the crosslinked points. Thus, the depicted two-
SAW configuration should contribute the weight x18

1 x14
2 w6t6

in the corresponding RG equations (more specifically, in the
equation (5) for i = 2 and r = 1).

terms of the interaction parameters have the form

P
(r)
i (x1, x2, w, t) =

∑
N1,N2,M,K

Pi
(r)(N1, N2, M, K)

xN1
1 xN2

2 wM tK , i = 1, 2, 3, (5)

Q
(r)
i (x1, x2, w, t) =

∑
N1,N2,M,K

Qi
(r)(N1, N2, M, K)

xN1
1 xN2

2 wM tK , i = 1, 2, 3, 4,
(6)

R
(r)
i (x1, x2, w, t) =

∑
N1,N2,M,K

Ri
(r)(N1, N2, M, K)

xN1
1 xN2

2 wM tK , i = 1, 2, 3, (7)

S
(r)
i (x1, x2, w, t) =

∑
N1,N2,M,K

Si
(r)(N1, N2, M, K)

xN1
1 xN2

2 wM tK , i = 1, 2, 3, (8)

T
(r)
i (x1, x2, w, t) =

∑
N1,N2,M,K

Ti
(r)(N1, N2, M, K)

xN1
1 xN2

2 wM tK , i = 1, 2. (9)

Each set of coefficients (Pi,Qi,Ri,Si, Ti) in the above
sums have definite meaning that reflects the corresponding
two-polymer configurations (see Fig. 4). In what follows
we shall respectively describe each set of coefficients.

Pi
(r)(N1, N2, M, K) is the number of two-chain config-

urations, such that each chain is of the F type (see Fig. 3).

F H

F HG

G1 1

2 22

1

Fig. 3. Schematic representation of the six basic restricted
partition functions, at the rth stage fractal structure, needed
to obtain all possible configurations of two separated polymer
chains (chain 1 is depicted by the solid wiggled line, while the
chain 2 is depicted by the wiggled tube).

These chains, with N1 and N2 monomers, have M mutual
crossings, and posses K pair of sites which are nearest
neighbours to crosslinked sites, that belong to different
chains (this meaning of M and K stays valid for the rest
four sets of coefficients).

Qi
(r)(N1, N2, M, K) is the number of two-chain con-

figurations, such that each chain is either of F or of G
type, but excluding situations when both are of F type.

Ri
(r)(N1, N2, M, K) (and similarly Si

(r)(N1, N2, M ,
K)) is the number of two-chain configurations, such that
only one chain is of the H type, while the other chain must
be of the F or G type (see Fig. 3).

Finally, the coefficients Ti
(r)(N1, N2, M, K) is the num-

ber of two-chain configurations, such that bout chains are
of the H type.

These generating functions (depicted in Figs. 3 and 4)
appears to be parameters in the renormalization group
(RG) approach. It can be verified that in the b = 3 case
the system under study would be forced to stay in a finite
piece of the underlying fractal lattice [27,28], while for any
b ≥ 5 the RG equations have the form

F
(r+1)
i =

∑
j1,j2,j3

fi(j1, j2, j3)F
j1
i Gj2

i Hj3
i , i = 1, 2, (10)

G
(r+1)
i =

∑
j1,j2,j3

gi(j1, j2, j3)F
j1
i Gj2

i Hj3
i , i = 1, 2, (11)

H
(r+1)
i =

∑
j1,j2,j3

hi(j1, j2, j3)F
j1
i Gj2

i Hj3
i , i = 1, 2, (12)

P
(r+1)
i =

∑
j1,...,j21

pi(j1, . . . , j21)F
j1
1 Gj2

1 Hj3
1 F j4

2 Gj5
2 Hj6

2

P j7
1 P j8

2 P j9
3 Qj10

1 Qj11
2 Qj12

3 Qj13
4 Rj14

1 Rj15
2 Rj16

3

Sj17
1 Sj18

2 Sj19
3 T j20

1 T j21
2 , i = 1, 2, 3, (13)
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Fig. 4. Schematic representation of the fifteen restricted gen-
erating functions used in describing all possible two-polymer
configurations within the rth stage CB (or X) fractal structure.
Thus, for example, P1 represents the polymers’ paths that start
at the lower left vertex and exit at the lower right vertex. The
interior details of the rth order fractal structure are not shown
(they are manifested by the wiggles of the paths).

Q
(r+1)
i =

∑
j1,...,j21

qi(j1, . . . , j21)F
j1
1 Gj2

1 Hj3
1 F j4

2 Gj5
2 Hj6

2

P j7
1 P j8

2 P j9
3 Qj10

1 Qj11
2 Qj12

3 Qj13
4 Rj14

1 Rj15
2 Rj16

3

Sj17
1 Sj18

2 Sj19
3 T j20

1 T j21
2 , i = 1, 2, 3, 4, (14)

R
(r+1)
i =

∑
j1,...,j21

ri(j1, . . . , j21)F
j1
1 Gj2

1 Hj3
1 F j4

2 Gj5
2 Hj6

2

P j7
1 P j8

2 P j9
3 Qj10

1 Qj11
2 Qj12

3 Qj13
4 Rj14

1 Rj15
2 Rj16

3

Sj17
1 Sj18

2 Sj19
3 T j20

1 T j21
2 , i = 1, 2, 3, (15)

S
(r+1)
i =

∑
j1,...,j21

si(j1, . . . , j21)F
j1
1 Gj2

1 Hj3
1 F j4

2 Gj5
2 Hj6

2

P j7
1 P j8

2 P j9
3 Qj10

1 Qj11
2 Qj12

3 Qj13
4 Rj14

1 Rj15
2 Rj16

3

Sj17
1 Sj18

2 Sj19
3 T j20

1 T j21
2 , i = 1, 2, 3, (16)

T
(r+1)
i =

∑
j1,...,j21

ti(j1, . . . , j21)F
j1
1 Gj2

1 Hj3
1 F j4

2 Gj5
2 Hj6

2

P j7
1 P j8

2 P j9
3 Qj10

1 Qj11
2 Qj12

3 Qj13
4 Rj14

1 Rj15
2 Rj16

3

Sj17
1 Sj18

2 Sj19
3 T j20

1 T j21
2 , i = 1, 2, (17)

where we have omitted the superscript (r) on the right-
hand side of the above relations. The self-similarity of the
fractals implies that numbers {fi(j1, j2, j3), gi(j1, j2, j3),
hi(j1, j2, j3)} which describe configurations of a polymer
chain, and that numbers {pi(j1, . . . , j21), qi(j1, . . . , j21),
ri(j1, . . . , j21), si(j1, . . . , j21), ti(j1, . . . , j21)} of the corre-
sponding two-chain configurations do not depend on r.
Starting with the initial conditions

F
(0)
i (xi) = G

(0)
i (xi) = x2

i , H
(0)
i = 0, i = 1, 2;

P
(0)
1 (x1, x2, w, t) = x2

1x
2
2w

2,

P
(0)
2 (x1, x2, w, t) = x2

1x
2
2w

3/2,

P
(0)
3 (x1, x2, w, t) = x2

1x
2
2wt2,

Q
(0)
1 (x1, x2, w, t) = Q

(0)
2 (x1, x2, w, t) = x2

1x
2
2w

3/2t,

Q
(0)
3 (x1, x2, w) = x2

1x
2
2w

2,

Q
(0)
4 (x1, x2, w, t) = x2

1x
2
2wt4,

S
(0)
i = R

(0)
i = 0, i = 1, 2, 3;

T
(0)
i = 0, i = 1, 2, (18)

(which for the X fractals correspond to the crosses com-
prised of squares’ diagonals) one can iterate the RG re-
lations (10–17) for various values of interactions w and t,
and explore the resulting phase diagram.

3 Analysis of the RG equations

To solve exactly the problem of two mutually crossing
SAWs, for arbitrary member (arbitrary b ≥ 3) of the
X (CB) family, it is necessary to find all coefficients that
appear in the RG equations (10–17). The b = 3 case would
not reveal physically interesting results (as it was already
noted, the system under study would be forced to stay in a
finite piece of the underlying fractal lattice). On the other
hand, for the b = 5, 7 and b = 9 fractals only RG equa-
tions (10, 11) and (12), that correspond to the one polymer
case, have been studied [27]. In this paper we undertake
a thorough analysis of the b = 5 and b = 7 RG trans-
formations for two crosslinked polymers, which requires
analysis of an additional set of equations (13–17). Thus,
the complete set of the RG transformations is (10–17),
and it should be analyzed together with the correspond-
ing initial conditions (18).

On the physical grounds that are plausible for the
problem under study (see, for example [25]), one can ex-
pect that the RG transformations should have three rele-
vant fixed points of the general type

(F ∗
1 , G∗

1, H
∗
1 , F ∗

2 , G∗
2, H

∗
2 , P ∗

1 , P ∗
2 , P ∗

3 , Q∗
1, Q

∗
2, Q

∗
3,

Q∗
4, R

∗
1, R

∗
2, R

∗
3, S

∗
1 , S∗

2 , S∗
3 , T ∗

1 , T ∗
2 ). (19)

The first fixed point

(F ∗, G∗, H∗, F ∗, G∗, H∗, 0, 0, H∗, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0), (20)
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with P ∗
1 = P ∗

2 = 0, P ∗
3 = H∗, Q∗

i = 0 (i = 1, 2, 3, 4),
R∗

i = S∗
i = 0 (i = 1, 2, 3) and T ∗

i = 0 (i = 1, 2), due to the
meaning of these quantities (see Figs. 3 and 4), describes
segregated phase of two chain polymers that should be
expected in the high temperature region. The second fixed
point

(F ∗, G∗, H∗, F ∗, G∗, H∗, (F ∗)2, (F ∗)2, (F ∗)2,

F ∗G∗, F ∗G∗, (G∗)2, (G∗)2, F ∗H∗, G∗H∗, F ∗H∗,

F ∗H∗, G∗H∗, F ∗H∗, (H∗)2, (H∗)2), (21)

with P ∗
i = (F ∗)2 (i = 1, 2, 3), Q∗

1 = Q∗
2 = F ∗G∗, Q∗

3 =
Q∗

4 = (G∗)2, S∗
1 = S∗

3 = R∗
1 = R∗

3 = F ∗H∗, S∗
2 = R∗

2 =
G∗H∗ and T ∗

1 = T ∗
2 = (H∗)2, which appears to be a

tricritical point, describes the state of the two-polymer
system that occurs at the critical temperature T = Tc

when segregated and entangled polymer phases become
identical. Finally, the third fixed point

(0, 0, 0, 0, 0, 0, F ∗, 0, 0, 0, 0, G∗, 0, 0, 0, 0, 0, 0, 0, H∗, 0).
(22)

with P ∗
1 = F ∗, Q∗

3 = G∗ and T ∗
1 = H∗, describes the

polymer entangled state, which should emerge at low
temperatures.

In what follows we focus our attention on the tricrit-
ical fixed point (21) to calculate the contact critical ex-
ponent ϕ. It should be observed that, for each b, equa-
tions (10–12), have only one nontrivial fixed point value
F ∗

1 = F ∗
2 = F ∗, G∗

1 = G∗
2 = G∗ and H∗

1 = H∗
2 = H∗ [27],

which thereby completely determines the tricritical fixed
point. Calculation of the contact critical exponent ϕ starts
with solving the eigenvalue problem of the RG equa-
tions (10–12), linearized at the tricritical fixed point. Here
it should be noticed that the RG equations (10–12), for
i = 1 and i = 2, have the identical structure, and, in ad-
dition, they are not coupled with the other 15 RG equa-
tions (13–17), which implies that the eigenvalue problem
can be separated into two parts. The first part of the eigen-
value problem, related to the equations (10–12) (for i = 1,
or i = 2) gives the eigenvalue λν of the end–to–end dis-
tance critical exponent ν = ln b/ lnλν . The second part of
the eigenvalue problem reduces to solving the equation

det
∣∣∣∣
(

∂X ′
i

∂Xj

)∗
− λ δi,j

∣∣∣∣ = 0, (23)

where Xi are elements of the set {P1, P2, P3, Q1, Q2, Q3,
Q4, R1, R2, R3, S1, S2, S3, T1, T2}, and the asterisk means
that the derivatives should be taken at the tricritical fixed
point. Also, we have used the prime symbol as a super-
script for the (r + 1)–th restricted partition functions and
no indices for the rth order partition functions. The la-
rgest eigenvalue λϕ of above equation determine the con-
tact critical exponent through the formula

ϕ =
ln λϕ

ln λν
. (24)

Hence, in an exact RG evaluation of ϕ one needs
to calculate partial derivatives of sums (10–17), and ac-
cordingly one should find the coefficients fi(j1, j2, j3),

gi(j1, j2, j3), hi(j1, j2, j3), pi(j1, . . . , j21), qi(j1, . . . , j21),
ri(j1, . . . , j21), si(j1, . . . , j21), and ti(j1, . . . , j21), by an ex-
act enumeration of all possible SAWs for each particular b.
We have enumerated the needed coefficients by using com-
puter facilities of a personal computer with the Intel Pen-
tium 4 CPU. The corresponding enumerations are very
cumbersome because of the very large number of possible
configurations. For instance, the coefficient p2(j1, . . . , j21),
in the b = 5 case, has 282 nonzero values which spring
from 324 different polymer configurations of the P2 type
(see Fig. 4). For the sake of comparison, we quote here that
the same coefficient, in the case b = 7, has 90598 nonzero
values which is related to the 292 677 different polymer
configurations. Therefore, it is impossible to quote these
coefficients (the authors of this paper are willing to pro-
vide, upon a request, all these data by electronic means).

We have first analyzed the complex system of the RG
equations for b = 5, in order to locate the relevant fixed
points. After an extensive numerical analysis we have
found three fixed points. The first one describes critical
properties of the segregate phase of the two-chain poly-
mer system. Its coordinates, written in the way accepted
in (20), are specified by F ∗ = 0.663711, G∗ = 0.724640
and H∗ = 0.100029. The specified values stay valid for
the tricritical fixed point (21), and for the third one (22)
that describe the entangled polymer phase.

To learn the physical behaviour of the system un-
der study we have repeatedly performed mapping of the
interaction parameters using the established RG trans-
formations, together with the concomitant initial condi-
tions (18). The obtained phase diagram is depicted in
Figure 5, in which one may follow the critical fugacity xc

curve for the X fractal as a function of the parameter w for
various values of t. When the RG transformations (10–17)
are iterated by starting at the horizontal part of the curves
xc = x∗

c (at small values of w) the fixed point (20), which
describes the segregate phase of the two chain polymer
system, is reached. On the other hand, if the iterations
start at the part of the critical fugacity curve xc = xc(w)
that appears beyond the point (w∗

c (ti), x∗
c) the polymer

entangled state fixed point (22) is achieved. Finally, when
the RG iteration starts at the points (w∗

c (t), x∗
c), where

the curves which correspond to the segregate phase join
with the curves of the entangled polymer phases, it leads
to the tricritical fixed point (21). In addition to the pre-
sented graphic, we give here our finding for the specific
value of the contact critical exponent ϕ. In the b = 5
case, we have found λϕ = 4.529696, which together with
the previously found [27] value λν = 6.607689, through
formula (24), gives ϕ = 0.800036. Before passing further,
we find sensible to note that λν = 6.607689 brings about
ν = 0.85235.

In the case b = 7 fractal we can expect to find the
same type of the phase diagram as in the case b = 5
(see Fig. 5). To obtain the same set of data discussed
above (for b = 5), we need to perform a similar kind of
analysis of the corresponding RG transformations. How-
ever, in this case one encounters a specific computational
problem, that is, we have been able to calculate all the
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Fig. 5. The critical fugacity xc curve for the X fractal, with the
base b = 5, as a function of the parameter w for various values
of t, (t1 > t2 > t3 = 1 > t4). The RG transformations (10–17)
iterated by starting at the horizontal part of the curves xc = x∗

c

lead to the fixed point (20), which describes the segregate phase
of the two chain polymer system. On the other hand, if the
iterations start at the part of the critical fugacity curve xc =
xc(w) that appears beyond the point (w∗

c (ti), x
∗
c), i = 1, 2, 3,

and 4, it leads to the polymer entangled state fixed point (22).
Finally, when the RG iteration starts at the point (w∗

c (ti), x
∗
c)

it reaches the tricritical fixed point (21).

requisite coefficients of the RG transformations (10–17),
but it was impossible to store all of them in the mem-
ory of the available computer system. Fortunately, we
have found means to surmount this problem by observing
that neglecting the partition functions of the Hi type (see
Fig. 3), as well as those functions (Si, Ri, Ti, see Fig. 4)
that are comprised of Hi, does not cause significant errors
in the results for the critical exponents. To corroborate
this approach, we analyzed in this manner the b = 5 case,
where we have available exact results. Thus, for b = 5, we
obtained the following coordinates for the relevant fixed
points F ∗ = 0.659119, G∗ = 0.737227 and H∗ ≡ 0 which
brings about ν = 0.86098 and ϕ = 0.797108. Comparing
the latter two approximate values with the exact findings
ν = 0.85235 and ϕ = 0.800036, one can observe the fol-
lowing deviations δν = 1.02% and δϕ = 0.36%. Thus, one
may conclude that the suggested approximate approach
(H∗ ≡ 0) could not cause significant errors. Moreover,
we may expect that for larger b deviations gradually de-
crease [25].

Accepting in the case b = 7 the method suggested in
the foregoing paragraph, we get the following values of
coordinates for the relevant fixed points F ∗ = 0.569527,
G∗ = 0.627881 and H∗ ≡ 0, which provides new re-
sults within the scope of the studied problem, that is,
ν = 0.820009 and ϕ = 0.670485. Comparing the obtained
value for ν with the exact [27] value ν = 0.81502 we dis-
cover that the relevant deviation δν = 0.63% is almost two
times smaller than in the case when the same method was
applied for b = 5. On these grounds, we may expect that

the obtained value for the critical exponent ϕ should not
deviate from the exact value more that 0.23%.

4 Summary and discussion

In this paper we have studied the statistical properties of
two chemically different polymers that display recogniz-
able monomer–monomer crosslinking interaction. Such a
situation can be modelled by two mutually crossing self-
avoiding walks (SAWs) on a appropriate lattice. In order
to explore effects of crosslinking of the two SAWs on the
CB (X) fractals, we have introduced the two weighting
factors w = e−εc/T and t = e−εt/T , where εc is energy
of two monomers in contact (which occurs at a crossing
site of SAWs), while εt is the energy associated with two
monomers which are nearest neighbours of the crosslinked
site and which belong to different polymers. To obtain spe-
cific results for the problem under study, we have applied
the exact RG method in the case of the CB fractals and
X fractals, and for their specific cases labelled by b = 5
and b = 7 (the cases with b > 7 are not amenable to the
exact approach).

In both cases (b = 5 and b = 7) we have found the
phase diagrams defined in the planes of the interaction
parameters x and w, for various values of t. We have cal-
culated the critical curves whose two consecutive segments
(which determine, depending on the value of w, two dif-
ferent phases, segregate and entangled) meet at the the
tricritical point that provides possibility of calculating the
contact critical exponent ϕ. In accordance with presented
RG outline, we have found ϕ = 0.800036, for b = 5, and
ϕ = 0.670485, for b = 7. The difference between the two
values reflects the different energies that would be needed
to uncouple polymers which have been crosslinked on the
two different CB lattices under study (the cases b = 5 and
b = 7). On the other hand, the difference in the values
of ϕ should have been expected because of the difference
in the fractal dimensions (dCB

f (b = 7) > dCB
f (b = 5);

dCB
f (b = 7) = 1.65417 and dCB

f (b = 5) = 1.59369), which
causes less possibility for two polymers to come across
each other on the b = 7 lattice than on the b = 5 lat-
tice. Comparing our presented findings with the value
ϕ = 0.516 ± 0.005 [16] calculated for the 2d Euclidean
case, we observe that the latter is smaller than the corre-
sponding values pertinent to the fractal lattices.

The next assessment of our results can be compar-
ison with available results obtained for the same prob-
lem analyzed on fractals that have similar topological
properties. Unfortunately, presently there is only one case
that can be used for such a comparison. We find that
the results obtained for the Sierpinski gasket (SG) frac-
tals [23,24] may serve the purpose so as to compare our
results with the results for those SG fractals which have
approximately the same fractal dimensions as those stud-
ied in this work. Consequently, we should compare find-
ings for the b = 5 and b = 7 CB fractals with the b = 2
and b = 4 SG fractals, respectively. We find the follow-
ing inequalities ϕCB(5) = 0.800036 > ϕSG(2) = 0.7491
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and ϕCB(7) = 0.670485 < ϕSG(4) = 0.7117. Therefore we
may put forward the conclusion that the fractal dimension
is not the crucial parameter which determines the contact
critical exponent ϕ.

To make comparison of our findings with the existing
results, we inspect the phenomenological formula ϕph =
2 − νdf [16,24] for b = 5 and b = 7. The predictions that
follow from the preceding formula, ϕph(b = 5) = 0.64162
and ϕph(b = 7) = 0.65181, deviate from our exact results
19.8% and 2.78%, respectively. It appears that one can
conclude that the deviation of phenomenological predic-
tion from the exact results becomes smaller for the larger
scaling parameter b. This observation may be an inspira-
tion for the attempt to find more exact results, or to ex-
tend our approach by some reliable approximate means.
Within our knowledge of the field, we may expect that the
Monte Carlo renormalization group approach may be the
most effective choice for the further study of the problem.

This paper has been done as a part of the work within the
project No. 1634 funded by the Serbian Ministry of Science,
Technology and Development.
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